
Towards MapReduce Skeleton

in High Level Component Model

Christian Perez
Graal/Avalon INRIA EPI

LIP, ENS Lyon, France

Kickoff Meeting, ANR MapReduce

Rennes, 29-30 November 2010

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 2

Outline of the talk

� Motivation

� MapReduce

� Overview of HLCM core concepts

� ANR MapReduce & HLCM

� Towards MapReduce Skeletons

� Subtask 5.1

� Deliverables

� Collaborations?

� Conclusion

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 3

Objectives

� Enable code-reuse

� E.g. mapper or reducer code

� Let expert develop a piece of code not tied to a framework

� Enable adaptation when re-using code

� E.g. reducer “sum” not specific to a particular type of data

� Let re-use code with parameterization options

� Enable any kind of composition operators

� E.g. mapper or reducer may interact with a DB

� Do not impose any communication models (framework)

� Enable efficient implementation of composition operators

� E.g. enable resource specific optimization

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 4

How to Achieve Those Objectives?

� Enable code-reuse

� Software Component

� Primitive component for re-using implementation code

� Composite component for re-using assemblies of components

� Enable adaptation when re-using code

� Genericity

� Enable any kind of composition operators

� Connectors

� Enable efficient implementation of composition operators

� Open connection

Overview of Core Concepts of

High Level Component Model (HLCM)

Component, Connector, Hierarchy,

Genericity, & Template Meta-Programming

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 6

HLCM: High Level Component Model

� Defined in the PhD of Julien Bigot

� Major concepts

� Component model

� Primitive (abstract) and composite

� Connector based

� Primitive and composite

� Generic model

� Support meta-programming (template à la C++)

� Currently static

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 7

Connectors

� Without connectors

� Direct connection between ports

through model provided interactions

� With connectors

� Originally defined in ADLs

� Connectors reify connections

� A name

� A set of roles

� Any number of roles

� Can be 1st class entities

� Provided by the underlying model

� User implemented

Connector

Component Component

Component Component

rolesroles

portsports

connector UseProvide
< role user, role provider >;

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 8

HLCM: Component & Connector

� Black box that may expose some open connections

connector UseProvide
< role user, role provider >;

User role fulfilled

User role left “open”

aComponent

aComponent

Provider role left “open”

Provides InterfaceA cnxA
Uses InterfaceB cnxB

Provider role fulfilled

cnxA

cnxB

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 9

helloclient

HLCM: Composite Component

component Example { }

composite ExampleImpl
implements Example
{
HelloComponent hello;
ClientComponent client;

connection cnx;
cnx |= hello.talk;
cnx |= client.say;

}

client hello
����

Results in

����

talksay

cnx

ExampleImpl

ExampleImpl

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 10

HLCM: Primitive Components

� Abstract Component Model

� Primitive components not defined directly by HLCM

� Primitives defined by a specialization

� HLCM/Java, HLCM/C++, HLCM/CCM

� HLCM/CCM

� Primitive component: CCM component

� Primitive connector: UseProvide interactions

component HelloComponent {
UseProvide { provider [CCMProvide!(Hello)]; } talk;

}

Fulfilled role

User: role left “open”
HelloComponent

(Open) Connection

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 11

HLCM: User Implemented Connector

generator LoggingUP<UI,PI>
Implements UseProvide<provider = { CCMProvide!<PI> },

user = { CCMUse!<UI> }>
when (UI super PI)
{
Logger<UI> proxy;
proxy.clientSide.user += this.user;
proxy.serverSide.provider += this.provider;

}

Logged Use / Provide Logger<UI>U/P U/P

user

interface = UI

provider

interface = PI

When PI subtype of UI and
user.host = provider.host

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 12

HLCM: Benefit of Open Connections

merge expose
A �

merge
B

reuse

A2

A1 B1

B2

Results in What implementation to

use for this connection?

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 13

HLCM Connection Implementation:

a Planning Choice

Multiple hosts

distribution

Single host

distribution

� Component and connection implementation choice made

by choosers

� Not defined in HLCM

� Specialization depend

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 14

Model based HLCM Definition

� Connector

� Connection

� Assembly

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 15

HLCMi: An Implementation of HLCM

� Model-transformation based

� Eclipse Modeling Tools

� Mainly Emfatic files

� Used to generate ecore & Java files

� HLCM core (PIM + transformation)

� 127 UML classes

� 470 Emfatic lines

� 25 000 generated Java lines

� + 2000 Java lines for transformation engine

� OMG QVT was not well implemented

� Already implemented connectors

� Use/Provide, Shared Data, Collective Communications,
“MxN” RMI, Irregular Mesh

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 16

Architecture of HLCMi/CCM in LLCMj

HLCM
Parser

CCM
Parser

Cleaner

Transfo
Engine

CCCM
Dumper

Or Executor

Chooser

Type
Filter

Constraint
Filter

Resource
Accessor

Driver
(Main)

Exported
References

Imported
References

Resource
Repository

Resource
Filler

Plan
Repository

ANR MapReduce & HLCM

Subtask 5.1

Application programming and deployment

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 18

Reducer Output

Towards a MapReduce Skeleton in HLCM

Component MapReduce<Component Map, Component Reduce>
exposes { In, Out}

Mapper

Mapper

Input
In

Out

MapReduce<Mapper,

Reducer>

#reducer?

#mapper?

Self-*?

BlobSeer?

BitDew?

Both?

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 19

Subtask 5.1: Three Stages

� A coherent and easy-to-use programming model

� Check whether HLCM is ok

� Generate an executable (i.e., deployable) application

� Depend of the requirements of Task 5.

� Integrate the middleware layers resulting from Task 2, Task 3.1

and Task 3.2 into HLCM

� Define & implement adequate connectors

� Provide a tool to deploy the resulting executable to

targeted infrastructures (G5K, FutureGrid, etc)

� Adapt ADAGE, or integrate HLCM&Adage, or ?

� Depend on requirements

� Support elastic resource

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 20

Deliverables

� T0+18 [D5.1] (Stage 1 & 2)

� A study on the definition of Map-Reduce skeletons into a

template-based general purpose component model and the

usage of model transformation techniques to automatically

integrate middleware artifacts into a deployable application

(report).

� T0+24 [D5.2] (Stage 3)

� A study on the adaptation of the generic deployment tool Adage

to clouds in general, and Nimbus in particular (report).

� T0+36 [D5.3]: A set of integrated prototypes (software).

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 21

Subtask 5.1: Identified Collaborations

� Kerdata

� Integration Blobseer & HLCM

� Graal

� Integration Bitdew & HLCM

� Integration of scheduling algo into HLCM

� JointLab INRIA-UIUC Lab

� FT & HLCM to be discussed

� IBCP/MEDIT SA

� Bioinformatics application & HLCM

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 22

� HLCM

� Component, genericity, hierarchy, connector, open connection,

component&connector implementation choice

� Static model

� Dynamicity to be added

� HLCMi, an operational implementation

� Open Questions

� Do we need dynamicity support?

� Which primitive component model(s)?

Conclusion

