
4 !"##$%

&'(#)*

!!" #"! $%&&

$%' %"# "$%

$ $ $

#(&)* $+!,* %+",*

#(&&&& $!&&&&& %"&&&&&

$-$&+(" $--&+'$ %&'!+!!

! " #$ %& $! #&" &'$ '#&

(

&((

!((

$((

"((

#(((

#&((

#!((

)*+,-.*/-0123,456

7,81!

7,81%

Fig. 1: Scalability evaluation on the WordCount application: the y axis presents the throughput in MB/s and
the x axis the number of nodes varying from 1 to 512.

of nodes doubles, the size of the whole document counted doubles too. For 512 nodes3, the benchmark processes
2.5TB of data and executes 50,000 Map and Reduce tasks. Figure 1 presents the throughput of the WordCount
benchmark in MB/s versus the number of worker nodes. This result shows the scalability of our approach and
illustrates the potential of using Desktop Grid resources to process a vast amount of data.

Fault Tolerance In a typical desktop grid system like BOINC[11] and Condor[1] in addition to the user’s
behavior, like shutting down the computer, running tasks are suspended when keyboard or mouse events are
detected. CPU availability traces of participating nodes gathered from a real enterprise desktop grid [12] show
that the independent single node unavailability rate is about 40% on average and that up to 90% of the resources
can be unavailable simultaneously, causing catastrophic e�ect on the running jobs. We emulate this kind of faults
by killing worker processes on 25 worker nodes at di�erent job progress point during the map phase.

We find that whenever we kill the running tasks on 25 nodes, the Hadoop JobTracker just re-schedules
the 50 killed map tasks and prolongs the job make span time for about 6.5% in contrast to the normal case.
For the second test, the JobTracker blindly re-executes all successfully completed and progressing map tasks
on the failed TaskTrackers. This indicates that all 25 chosen worker nodes do not contribute to the whole job
execution progress at all. On the other hand, BitDew-MapReduce avoids substantial unnecessary fault tolerant
works. Because, in BitDew-MapReduce, the intermediate outputs of completed map tasks are safely stored on
the stable central storage server, the master does not re-execute the successfully completed map tasks of failed
workers.

Host Churn The independent arrival and departure of thousands or even millions of peer machines leads to
host churn. We periodically kill the MapReduce worker process on one node and launch it on a new node to
emulate the host churn e�ect. To increase the survival probability of Hadoop job completion, we increase the
HDFS chunk replica factor to 3, and set the DataNode heartbeat timeout value to 20 seconds. Because the
BitDew MapReduce runtime does not waste the work completed by failing workers, host churn causes very
small e�ects on the job completion time. On the other hand, as shown in table 2, for host churn intervals of 5,
10 and 25 seconds, Hadoop jobs could only progress up to 80% of the map phase before failing.

Churn Interval (sec.) 5 10 25 30 50
Hadoop job makespan (sec.) failed failed failed 2357 1752

BitDew-MR joa makespan (sec.) 457 398 366 361 357

Fig. 2: Performance evaluation of host churn scenario

Network Connectivity We set custom firewall and NAT rules on all the worker nodes to turn down some
network links and observe how MapReduce jobs perform. In this test, Hadoop cannot even launch a job,

3 GdX has 356 double core nodes, so to measure the performance on 521 nodes we run two workers per node on 256
nodes.

BlobSeer Does Better than Hadoop!	

	

	

	

	

	

	

	

	

	

BlobCR: high performance resilience �
using virtual disk based checkpoint-restart�
	

	

	

	

	

	

	

	

	

	

gabriel.antoniu@inria.fr	
 	

More	
 on	
 MapReduce:	

mapreduce.inria.fr	
 	

FONDEMENT DES SYSTÈMES
INFORMATIQUES�

COORDINATOR: Gabriel Antoniu, INRIA Rennes – Bretagne Atlantique �
PARTNERS: INRIA (KerData, AVALON Project-Teams), CNRS IBCP, IBM France, Argonne National Lab,
University of Illinois – Urbana Champaign, MEDIT�

MapReduce �

!   Highlights�

BitDew �
	

	

	

	

	

	

	

	

	

Scheduling �
	

	

	

	

	

	

	

	

	

	

	

! Methodology �
Ø Hybrid	
 storage	
 infrastructure	

Ø  BlobSeer	
 (BS):	
 	
 distributed	
 storage	
 management	
 on	
 Clouds	

Ø  BitDew	
 (BD):	
 distributed	
 storage	
 on	
 desktop	
 grids	

Ø High	
 throughput	
 concurrent	
 data	
 access	

Ø  Distributed	
 metadata,	
 lock-­‐free	
 access	
 to	
 storage	

Ø High	
 level	
 component	
 model	
 (HLCM)	

Ø  Generic	
 hierarchical	
 connector-­‐based	
 component	
 model	

! Context and objectives �
MapReduce	
 is	
 a	
 programming	
 model	
 for	
 data-­‐intensive	
 compuFng	

Open	
 issues	
 and	
 challenges:	

Ø Low	
 throughput	
 for	
 massively	
 concurrent	
 accesses	

Ø Scheduling	
 and	
 fault	
 tolerance	
 sFll	
 rudimentary	

Ø Hybrid	
 plaHorms	
 (cloud	
 federaFons,	
 desktop	
 grids)	
 not	
 explored	
 yet	

Goal:	
 an	
 op8mized	
 MapReduce	
 framework	
 for	
 hybrid	
 infrastructures	

ApplicaFons	

OpFmized	
 MR	
 framework	

Hadoop	
 BD	
 MR	

BlobSeer	

File	
 System	

BitDew	

Framework	

	
 Desktop	

Grids	

Execu8on	
 8me	
 reduced	
 by	
 up	
 to	
 38%!	

Speedup vs. PVFS + QCOW2: 6x VM level,3x process + app level

Restart	
 speed	
 accelerated	
 by	
 70%!	
 	

ARPEGE 2010 ANR-10-SEGI-001�

Th
ro
ug
hp

ut
	
 (M

B/
s)
	

Scalable	
 MapReduce	
 Processing	
 on	
 Internet	
 Desktop	
 Grid	

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 50 100 150 200 250 300

Ti
m

e
in

 s
ec

on
d
s

Number of nodes m = r

lin. prog. + static sched.
lin. syst. + dyn. sched.

!   Applications �

Ø  SuMo	
 –	
 Protein	
 Structure	

Ø  Perform	
 coarse-­‐grain	
 pairwise	

comparisons	
 of	
 protein	
 structures	

Ø  Compare	
 a	
 set	
 of	
 structures	
 against	
 a	

database	

Ø  Commercial	
 version:	
 MEDIT	

Ø  FastA	
 –	
 Sequence	

Comparison	

Ø  Compare	
 sequences	
 over	
 a	
 database	

Ø  Compare	
 a	
 database	
 over	
 itself	

Ø  ApplicaFon	
 to	
 genome	
 and	
 proteome	

Bioinforma8cs	

Mappers

Databank

FastA
#01

Reducers

subset
#01

subset
#02

...

FastA
#02 ...

User's
Sequences

Results
score sequence
score sequence

...

FastAMR

Each mapper

send the

score and

sequences to

reducers

Reducers copy the

best scores of the

whole experiment

in the DFS

Each mapper

runs a FastA

program on a

part of the

databank

FastAMR splits the

databank into subsets

and puts them in the

DFS along with the

sequences file

Users run the FastAMR

script with its sequences

and the databank

MapReduce	
 of	
 Biological	
 Sequences	

Execu8on	
 8me	
 reduced	
 by	
 up	
 to	
 47%!	

Map	
 phase	
 +	
 shuffle	
 duraFon	
 w.r.t	
 number	
 of	
 mappers	
 and	
 reducers	

Number	
 of	
 cores	

