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Fig. 1: Scalability evaluation on the WordCount application: the y axis presents the throughput in MB/s and
the x axis the number of nodes varying from 1 to 512.

of nodes doubles, the size of the whole document counted doubles too. For 512 nodes3, the benchmark processes
2.5TB of data and executes 50,000 Map and Reduce tasks. Figure 1 presents the throughput of the WordCount
benchmark in MB/s versus the number of worker nodes. This result shows the scalability of our approach and
illustrates the potential of using Desktop Grid resources to process a vast amount of data.

Fault Tolerance In a typical desktop grid system like BOINC[11] and Condor[1] in addition to the user’s
behavior, like shutting down the computer, running tasks are suspended when keyboard or mouse events are
detected. CPU availability traces of participating nodes gathered from a real enterprise desktop grid [12] show
that the independent single node unavailability rate is about 40% on average and that up to 90% of the resources
can be unavailable simultaneously, causing catastrophic e�ect on the running jobs. We emulate this kind of faults
by killing worker processes on 25 worker nodes at di�erent job progress point during the map phase.

We find that whenever we kill the running tasks on 25 nodes, the Hadoop JobTracker just re-schedules
the 50 killed map tasks and prolongs the job make span time for about 6.5% in contrast to the normal case.
For the second test, the JobTracker blindly re-executes all successfully completed and progressing map tasks
on the failed TaskTrackers. This indicates that all 25 chosen worker nodes do not contribute to the whole job
execution progress at all. On the other hand, BitDew-MapReduce avoids substantial unnecessary fault tolerant
works. Because, in BitDew-MapReduce, the intermediate outputs of completed map tasks are safely stored on
the stable central storage server, the master does not re-execute the successfully completed map tasks of failed
workers.

Host Churn The independent arrival and departure of thousands or even millions of peer machines leads to
host churn. We periodically kill the MapReduce worker process on one node and launch it on a new node to
emulate the host churn e�ect. To increase the survival probability of Hadoop job completion, we increase the
HDFS chunk replica factor to 3, and set the DataNode heartbeat timeout value to 20 seconds. Because the
BitDew MapReduce runtime does not waste the work completed by failing workers, host churn causes very
small e�ects on the job completion time. On the other hand, as shown in table 2, for host churn intervals of 5,
10 and 25 seconds, Hadoop jobs could only progress up to 80% of the map phase before failing.

Churn Interval (sec.) 5 10 25 30 50
Hadoop job makespan (sec.) failed failed failed 2357 1752

BitDew-MR joa makespan (sec.) 457 398 366 361 357

Fig. 2: Performance evaluation of host churn scenario

Network Connectivity We set custom firewall and NAT rules on all the worker nodes to turn down some
network links and observe how MapReduce jobs perform. In this test, Hadoop cannot even launch a job,

3 GdX has 356 double core nodes, so to measure the performance on 521 nodes we run two workers per node on 256
nodes.
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! Methodology �
Ø Hybrid	  storage	  infrastructure	  
Ø  BlobSeer	  (BS):	  	  distributed	  storage	  management	  on	  Clouds	  
Ø  BitDew	  (BD):	  distributed	  storage	  on	  desktop	  grids	  

Ø High	  throughput	  concurrent	  data	  access	  
Ø  Distributed	  metadata,	  lock-‐free	  access	  to	  storage	  

Ø High	  level	  component	  model	  (HLCM)	  
Ø  Generic	  hierarchical	  connector-‐based	  component	  model	  

! Context and objectives �
MapReduce	  is	  a	  programming	  model	  for	  data-‐intensive	  compuFng	  
Open	  issues	  and	  challenges:	  
Ø Low	  throughput	  for	  massively	  concurrent	  accesses	  
Ø Scheduling	  and	  fault	  tolerance	  sFll	  rudimentary	  
Ø Hybrid	  plaHorms	  (cloud	  federaFons,	  desktop	  grids)	  not	  explored	  yet	  
Goal:	  an	  op8mized	  MapReduce	  framework	  for	  hybrid	  infrastructures	  

ApplicaFons	  

OpFmized	  MR	  framework	  
Hadoop	   BD	  MR	  

BlobSeer	  
File	  System	  

BitDew	  
Framework	  

	  Desktop	  
Grids	  

Execu8on	  8me	  reduced	  by	  up	  to	  38%!	  

Speedup vs. PVFS + QCOW2: 6x VM level,3x process + app level 

Restart	  speed	  accelerated	  by	  70%!	  	  
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!   Applications �

Ø  SuMo	  –	  Protein	  Structure	  
Ø  Perform	  coarse-‐grain	  pairwise	  

comparisons	  of	  protein	  structures	  
Ø  Compare	  a	  set	  of	  structures	  against	  a	  

database	  
Ø  Commercial	  version:	  MEDIT	  

Ø  FastA	  –	  Sequence	  
Comparison	  

Ø  Compare	  sequences	  over	  a	  database	  
Ø  Compare	  a	  database	  over	  itself	  
Ø  ApplicaFon	  to	  genome	  and	  proteome	  
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MapReduce	  of	  Biological	  Sequences	  

Execu8on	  8me	  reduced	  by	  up	  to	  47%!	  

Map	  phase	  +	  shuffle	  duraFon	  w.r.t	  number	  of	  mappers	  and	  reducers	  

Number	  of	  cores	  


